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Introduction

• Consider an nth order single-input/single-output system G(s):

G(s) :





ẋ(t) = Ax(t) + bu(t)

y(t) = cx(t)
⇔

G(s) = c(sIn − A)−1b

= n(s)
d(s)

• u(t) ∈ R: input, x(t) ∈ R
n: state, y(t) ∈ R: output

• A ∈ R
n×n, b, cT ∈ R

n. Will assume ℜ(λi(A)) < 0

• Need for improved accuracy =⇒ Include more details in

the modeling stage

• In many applications, n is quite large, n ≈ O(106, 107),

• Untenable demands on computational resources =⇒
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Model Reduction Problem: Find

ẋr(t) = Ar xr(t) + br u(t)

yr(t) = cr xr(t)
⇔ Gr(s) = cr(sIr − Ar)

−1br

• where Ar ∈ R
r×r, br, c

T
r ∈ R

r, with r ≪ n such that

1. ‖y − yr‖ is small.

2. The procedure is computationally efficient.

A  B 

C D 

A
r
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r
 

C D r r 

• Gr(s): used for simulation or designing a reduced-order controller
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Model reduction of Serkan 
from n=3 down to r=2

Cascades, Blacksburg, VA



• Model reduction through projection: a unifying framework.

• Construct Π = VZT , where V,Z ∈ R
n×r with ZT V = Ir:

ẋr = ZT AV︸ ︷︷ ︸
:=Ar

xr(t) + ZT b︸︷︷︸
:=br

u(t), yr(t) = cV︸︷︷︸
:=cr

xr(t)

What is the approximation error e(t) := y(t) − yr(t)?

• G(s): Associate a convolution operator S:

S : u(t) 7→ y(t) = (Su)(t) = (g ⋆ u)(t) =

∫ t

−∞

g(t − τ)u(τ)dτ.

• g(t) = ceAtb for t ≥ 0: Impulse response.

• Transfer function: G(s) = (Lg)(s) = c(sI − A)−1b.
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The H∞ Norm : 2-2 induced norm of S:

‖G(s)‖H∞
= sup

u 6=0

‖y‖2

‖u‖2
= sup

u 6=0

‖Su‖2

‖u‖2
= sup

w∈R

‖G(w)‖2

‖G − Gr‖∞= Worst output error ‖y(t) − yr(t)‖2 ∀ ‖u(t)‖2 = 1.

The H2 Norm : L2 norm of g(t) in time domain:

‖G(s)‖2
H2

=

∫
∞

0

trace[gT (t)g(t)]dt =
1

2π

∫
+∞

−∞

trace[G∗(w)G(w)]dw
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Motivating Example: Simulation

A Tunable Optical Filter: (Data: D. Hohlfeld, T. Bechtold, and

H. Zappe)

• An optical filter, tunable by thermal means.

• Silicon-based fabrication.

• The thin-film filter: mem-

brane to improve thermal iso-

lation

• Wavelength tuning by ther-

mal modulation of resonator

optical thickness

• The device features low power consumption, high tuning speed

and excellent optical performance.
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Modeling:

• A simplified thermal model to analyze/simulate important

thermal issues: 2D model and 3D model

• Meshed and discretized in ANSYS 6.1 by the finite element

methods

• The Dirichlet boundary conditions at the bottom of the chip.

• A constant load vector corresponding to the constant input

power of of 1 mW for 2D model and 10 mW for 3D model

• The output nodes located in the membrane

Eẋ(t) = Ax(t) + bu(t), y(t) = cx(t)

• 2D: n = 1668, nnz(A) = 6209, nnz(E) = 1668

• 3D: n = 108373, nnz(A) = 1406808, nnz(E) = 1406791
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Motivating Example: Control

Optimal Cooling of Steel Profiles in a Rolling Mill :

Data: Peter Benner
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• Different steps in the production process require different

temperatures of the raw material.

• To achieve high throughput, reduce the temperature as fast as

possible to the required level before entering the next

production phase.

• Cooling process by spraying cooling fluids on the surface

• Must be controlled so that material properties, such as

durability or porosity, stay within given quality standards

• Modeled as boundary control of a two dimensional heat

equation.

• A finite element discretization results in

Eẋ(t) = Ax(t) + bu(t), y(t) = cx(t).

• n = 79, 841: nnz(A) : 553921, nnz(E) : 554913
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Model Reduction via Interpolation

Rational Interpolation: Given G(s), find Gr(s) so that

Gr(s) interpolates G(s) and certain number of its derivatives

at selected frequencies σk in the complex plane

(−1)j

j!

djG(s)

dsj

∣∣∣∣
s=σk

=
(−1)j

j!

djGr(s)

dsj

∣∣∣∣
s=σk

,
for k = 1, . . . , K,

and j = 1, . . . , J

•
(−1)j

j!

djG(s)

dsj

∣∣∣∣
s=σk

= c(σkI − A)−(j+1)b:

= jth moment of G(s) at σk.

Why to choose model reduction via rational interpolation?
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• Generically, any reduced model Gr(s) can be obtained via

interpolation.

• Interpolation points = Zeroes of G(s) − Gr(s).

• BUT:

Prob-1: What is a good selection of interpolation points?

• Similar to polynomial approximation of complex functions.

• Recall: Trying to match the moments: c(σkI − A)−(j+1)b

• Moments are extremely ill-conditioned

Prob-2: Construct Gr(s) without explicit moment computation

• Prob-2 easier to tackle using rational Krylov framework

(Skelton et al. [1987], Grimme [1997]):
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• Given r interpolation points: {σi}
r

i=1

• Set V = Span
[
(σ1I − A)−1b, · · · , (σrI − A)−1b

]
, and

• Z = Span
[
(σ1 I − AT )−1cT , · · · , (σr I − AT )−1cT

]
, ZT V = Ir.

• Ar = ZT AV, br = ZT b, cr = cV

=⇒ G(σi) = Gr(σi), and
d

ds
G(s)

∣∣∣∣
s=σi

=
d

ds
Gr(s)

∣∣∣∣
s=σi

• Moment matching without explicit moment computation

• Still to answer: How to choose σi?

• σi = −λi(A) (Antoulas/G [2003]). Effective but not optimal.

• Does there exist an optimal selection?
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Optimal H2 approximation

Problem: Given a stable dynamical system G(s), find a

reduced model Gr(s) that satisfies

Gr(s) = arg min
deg(Ĝ) = r

Ĝ : stable

∥∥∥G(s) − Ĝ(s)
∥∥∥
H2

.

• Existence of a global minimal:

– Exists in the SISO case

– Not known for the MIMO case

• General approach: Find Gr(s) that satisfies first-order

necessary conditions: Wilson [1970], Meier and Luenburger [1967],

Hyland and Bernstein [1985], Yan and Lam [1999], ...

15



Framework of Wilson [1970]

• Given Gr(s) = cr(sIr − Ar)
−1br, define the error system

Ge(s) := G(s) − Gr(s) = ce(sI − Ae)
−1be

• Let Pe and Qe be the error gramians:

AePe + PeA
T
e + beb

T
e = 0, QeAe + AT

e Qe + cT
e ce = 0

• Pe =


 P11 P12

PT
12 P22


 , Qe =


 Q11 Q12

QT
12 Q22




• ‖Ge(s)‖
2
H2

= cePec
T
e : =⇒ First-order necessary conditions:

PT
12Q12 + P22Q22 = 0

QT
12b + Q22br = 0

crP22 − cP12 = 0.
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• Equivalently, V = P12P
−1
22 , Z = −Q12Q

−1
22 and

Ar = ZT AV, br = ZT b, cr = cV.

• H2 Iteration:

1. Choose an initial Gr(s) = cr(sIr − Ar)
−1br.

2. Compute Pe and Qe

3. Define V = P12P
−1
22 , Z = −Q12Q

−1
22

4. Let Ar = ZT AV, br = ZT b, cr = cV.

5. Return to Step 1.

• Two Lyapunov equations at each step.

• Similar framework by Hyland and Bernstein [1985]
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Framework of Meier and Luenberger [1967]

• Let Gr(s) = cr(sIr − Ar)
−1br solves the optimal H2 problem

• Let λ̂i = λi(Ar), i.e. the Ritz values.

• First-order conditions:

G(−λ̂i) = Gr(−λ̂i), and
d

ds
G(s)

∣∣∣∣
s=−λ̂i

=
d

ds
Gr(s)

∣∣∣∣
s=−λ̂i

• Match the first two moments at the mirror images of the Ritz

values.

• First-order conditions as interpolation.

⇓

• Rational Krylov Framework
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Theorem: The two frameworks are equivalent.

Proof: Starting point for Lyapunov → Interpolation Framework:

Lemma: (Gallivan et al. [2004], Antoulas/Sorensen [2002])

Let V solves AV + VAT
r + bbT

r = 0. Then,

Ran(V) = Span
[
(−λ̂1 I − A)−1b, · · · , (−λ̂rI − A)−1b

]
.

Starting point for Interpolation → Lyapunov Framework: Model

reduction via rational Krylov projection.
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• For the H2 problem, simply set σi = −λ̂i

• λ̂i NOT known a priori =⇒ Needs iterative rational steps

An Iterative Rational Krylov Algorithm (IRKA):
(G, Beattie, Antoulas [2004])

1. Choose σi for i = 1, . . . , r.

2. V = Span
[
(σ1I − A)−1b, · · · , (σrI − A)−1b

]
,

3. Z = Span
[
(σ1 I − AT )−1cT , · · · , (σr I − AT )−1cT

]
, ZT V = Ir.

4. while [relative change in σj ] > ǫ

(a) Ar = ZT AV,

(b) σi ←− −λi(Ar) for i = 1, . . . , r

(c) V = Span
[
(σ1 I − A)−1b, · · · , (σrI − A)−1b

]
.

(d) Z = Span
[
(σ1I − AT )−1cT , · · · , (σr I − AT )−1cT

]
, ZT V = Ir.

5. Ar = ZT AV, br = ZT b, cr = cV

• Upon convergence, first-order conditions satisfied via Krylov

projection framework, no Lyapunov solvers
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• No methods guarantee convergence to global minimum.

• Question: Global minimum of a restricted H2 minimization

problem?

Corollary: (Gaier 1980)

Given stable G(s), and the stable reduced poles α1, . . . , αr, define

Ĝ(s) :=
β0 + β1s + · · · + βrs

r

(s − α1) . . . (s − αr)
.

Then ‖G(s) − Ĝ(s)‖H2
is minimized if and only if

G(s) = Ĝ(s) for s = −α1,−α2, . . . ,−αr.

• Upon convergence, IRKA minimizes the H2 norm of the error

system among all possible reduced models having the same

reduced poles λ̂j .
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Convergence ?

• Understood better and better every day !!!

• A fixed point iteration:
{

σi
(k+1)

}
= f

({
σi

(k)
})

⇒ Π(k+1) = h
(
Π(k)

)

• Usual outcome is (numerical) convergence in 4 − 5 steps

• Convergence failure in rare circumstances.

• Newton Iteration Framework:

– Jacobian J: Sensitivity of λi(Ar) wrt {σi}

– Requires solving an r × r generalized eigenvalue problem

{σi}
(k+1) = {σi}

(k) − (I + J)−1
(
{σi}

(k) + {λi(Ar)}
(k)

)
.
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Stability ?

• Ar = ZT AV nonnormal reduced order model

→ Reduced order stability not guaranteed in general.

• But, very hard to force convergence to unstable model

(occasional unstable models can occur at intermediate stages)

• Fairly robust with respect to initial shift selection.

• Gugercin [CDC-2005]: Replace Z by QV(VT QV)−1 where

AT Q + QA + cT c = 0.

→ implies stability.
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EXTREMELY small order benchmark examples

Model r IRKA GFM OPM BTM

FOM-1 1 4.2683 × 10−1 4.2709 × 10−1 4.2683 × 10−1 4.3212 × 10−1

FOM-1 2 3.9290 × 10−2 3.9299 × 19−2 3.9290 × 10−2 3.9378 × 10−2

FOM-1 3 1.3047 × 10−3 1.3107 × 19−3 1.3047 × 10−3 1.3107 × 10−3

FOM-2 3 1.171 × 10−1 1.171 × 10−1 Divergent 2.384 × 10−1

FOM-2 4 8.199 × 10−3 8.199 × 10−3 8.199 × 10−3 8.226 × 10−3

FOM-2 5 2.132 × 10−3 2.132 × 10−3 Divergent 2.452 × 10−3

FOM-2 6 5.817 × 10−5 5.817 × 10−5 5.817 × 10−5 5.822 × 10−5

FOM-3 1 4.818 × 10−1 4.818 × 10−1 4.818 × 10−1 4.848 × 10−1

FOM-3 2 2.443 × 10−1 2.443 × 10−1 Divergent 3.332 × 10−1

FOM-3 3 5.74 × 10−2 5.98 × 10−2 5.74 × 10−2 5.99 × 10−2

FOM-4 1 9.85 × 10−2 9.85 × 10−2 9.85 × 10−2 9.949 × 10−1

• GFM: Gradient Flow Method of Yan and Lam [1999]

• OPM: Optimal Projection Method of Hyland and Bernstein [1985]

• BTM: Balanced Truncation Method of Moore [1981]

• FOM-1: n = 4, FOM-2: n = 7, FOM-3: n = 4, FOM-4: n = 2,
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ISS 12a Module

• n = 1412. Reduce to r = 2 : 2 : 60

• Compare with balanced truncation
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Part I: Conclusions and Future Work:

• Equivalence of first-order conditions for the H2 problem

• Iterative Rational Krylov for optimal H2 reduction

– First-order conditions while staying in Krylov framework

– No Lyapunov equations need to be solved

• Good H∞ performance as well (Zolatorjov Problem (Beattie [2005])).

• Some open issues remain for convergence and stability.

• Newton’s Iteration Formulation

• Application to controller reduction: Gugercin/Antoulas/Beattie [2005]

• Variations that guarantee stability (Gugercin [2005])

• Find another name and acronym better than IRKA
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Inexact Solves in Krylov-based Model Reduction

• Need for more detail and accuracy in the modeling stage ⇒

• System dimension n: O(106) or more ⇒

• (σI − A)v = b cannot be solved directly

• Inexact solves need to be employed in constructing V and Z

• Questions:

1. What are the perturbation effects on interpolation?

2. Robustness with respect to the inexact solves?

3. What are the effective preconditioning, restarting strategies?

4. What is the effect on (the optimality of) the reduced model?
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• For simplicity, consider the one-sided projection, i.e. V = Z.

• Let v̂j be an inexact solution for (σjI − A)vj = b

(σjI − A)v̂j − b = δbj with
‖δbj‖

‖b‖
≤ ǫ

• Define δvj := v̂j − vj = (σjI − A)−1δbj , and

K̂ :=
[

(σ1I − A)−1b + δv1, · · · (σrI − A)−1b + δvr

]
.

• Inexact Krylov-based reduced model obtained by

Ar = V̂
T
AV̂, br = V̂

T
b, cr = cV̂, where V̂

T
V̂ = Ir.

• where V̂ is an orthogonal basis for Range(K̂)
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Theorem: Given the above set-up,

cr(σjIr − Ar)
−1br = c(σjIn − A)−1b + εfwd

= c(σjIn − A)−1 (b + ∆bj)

where

εfwd = c
[
(σjIn − A)−1 − V(σjIr − Ar)

−1V
T
]
δbj .

∆bj = [In − (σjIn − A)V(σjIr − Ar)
−1V

T

]δbj .

• εfwd: Forward error, ∆bj : Backward error

• How well V(σjIr − Ar)
−1VT approximates (σjIn − A)−1

• Expect optimal model to be robust with respect to inexact solves.

• Same analysis valid for the two-sided projection as well.
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• GMRES:

1. The same Krylov subspace for each (σjI − A)vj = b

AWk = Wk+1H̃k ⇒ min
∥∥∥σj Ĩ − H̃k − ‖b‖e1

∥∥∥
2. Span{vj}

r
j=1 is important, rather than each vj

=⇒ min
x⊥x̂1,...,x̂ℓ

‖(σℓ+1I − A)x − b‖

3. Two-sided case: BiCG, ...

• Preconditioning:

1. If σj is close to σj+1, can re-use preconditioners for different

linear systems

2. Cost of recomputing vs cost of using a close-by

preconditioner
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Inexact IRKA (I-IRKA)

• IRKA requires solving 2r linear systems at each step

⇒ Expensive if n = O(106)

• Recall: {σj} converge fast

⇓

• Use the solution from the previous step as an initial guess for

the next step

• Expect faster convergence for a fixed tolerance value

• Optimal reduced model: Expect robustness
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Example: Optimal Cooling of Steel Profiles ( P. Benner)

• G(s) = c(sE − A)−1b, n = 20, 209

• Bad shift selection: σi = logspace(−8,−4, 6)

• r = 6 via Rational Krylov (RK) and Inexact-RK (I-RK).

• I-RK uses GMRES with tol = 10−5
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• Optimal {σi} obtained via IRKA

• Use these {σi} in I-RK.

• I-RK uses GMRES with tol = 10−4
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• Same model with n = 79, 841 (Finer discretization)

• r = 6 via IRKA and I − IRKA (tol = 5 × 10−5)

• IRKA: Initial guess from the previous step
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‖H1(s) − H2(s)‖∞ = 3.01 × 10−5.
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Part II: Conclusions and Future Work

• n >> 106: Forces usage of Inexact Solves in Krylov-based reduction

• Perturbation effects:

– Backward and forward error analysis framework

– Good/Optimal shift selection robust with respect to inexact solves

– I-IRKA

∗ (Locally) optimal reduced models for n > 106 without user

intervention

∗ Acceleration strategies

• Open issues:

– Global H2 and/or H∞ perturbation effects

– Modifications to GMRES, effective preconditioning strategies

– Scalable parallel versions

∗ A large-scale easy-to-use model reduction toolbox

∗ Modify the algorithms to fit into the framework of, e.g., Trilinos

∗ Implementation on Virginia Tech.-System X
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Alexei Nikolaevich Krylov

http://members.tripod.com/jeff560/

[1931] "On the numerical solution of the  equation by which, in technical matters,
frequencies of small oscillations of  material systems are determined"
to compute the characteristic polynomial coefficients. 



Controller reduction for large-scale systems

• Consider an nth order plant G(s) = c(sI − A)−1b

• nth
κ order stabilizing controller: K(s) = cK(sI − AK)−1bK + dK

• LQG, H∞ control designs ⇒ nκ = n ⇒

(i) Complex hardware (ii) Degraded accuracy

(iii) Degraded computational speed

• Obtain Kr(s) of order r ≪ nκ to replace K(s) in the closed loop.
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Controller reduction via frequency weighting

• Small open loop error ‖K(s) − Kr(s)‖∞ not enough. ⇒

• Minimize the weighted error:

‖Wo(s)(K(s) − Kr(s))Wi(s)‖∞ .

• How to obtain the weights Wo(s) and Wi(s)?

• If K(s) and Kr(s) have the same number of unstable poles and if

∥∥[K(s) − Kr(s)]]G(s)[I + G(s)K(s)]−1
∥∥
∞

< 1, or
∥∥[I + G(s)K(s)]−1G(s)[K(s) − Kr(s)]

∥∥
∞

< 1,
=⇒

=⇒ Kr(s) stabilizes G(s).
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• For stability considerations:

Wi(s) = I and Wo(s) = [I + G(s)K(s)]−1G(s) or

Wo(s) = I and Wi(s) = G(s)[I + G(s)K(s)]−1.

• To preserve closed-loop performance:

Wi(s) = [I + G(s)K(s)]−1 and Wo(s) = [I + G(s)K(s)]−1G(s).

• Solved by frequency-weighted balancing (Anderson and Liu [1989],

Schelfhout and De Moor [1996], Varga and Anderson [2002] ).

• Requires solving two Lyapunov equations of order n + nκ.

AiP + PAT
i + bib

T
i = 0, AT

o Q + QAo + cT
o co = 0,

• Ai,bi: K(s)Wi(s), Ao, co: Wo(s)K(s)

• Balance P and Q.
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Controller-reduction via Krylov Projection

• How to modify IRKA for the controller reduction problem?

• Let Wi(s) = I and Wo(s) = [I + G(s)K(s)]
−1

G(s) ⇒

• AKP + PAT
K + bKbT

K = 0︸ ︷︷ ︸
unweighted Lyapunov eq.

AT
wQ + QAw + cT

wcw = 0.︸ ︷︷ ︸
weighted Lyapunov eq.

• Z = K(AT ,CT , σi), and V = K(A,B, µj)

• Z and σi: Reflect Wo(s): the closed-loop information.

σi = wi over the region where Wo(w) is dominant

• V and µj : Obtained in an (optimal) open loop sense.

µj : From an iterative rational Krylov iteration
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An Iterative Rational Krylov Iteration for Controller Reduction:

1. Choose σi = wi, for i = 1, . . . , r where wi is chosen to reflect Wo(w).

2. Z = Span
[
(σ1I − AT

K
)−1cT

K
· · · (σrI − AT

K
)−1cT

K

]
with ZT Z = Ir.

3. V = Z

4. while [relative change in µj ] > ǫ

(a) Ar = ZT AKV,

(b) µj ←− −λi(Ar) for j = 1, . . . , r

(c) V = Span
[
(µ1I − AK)−1bK · · · (µrI − AK)−1bK

]
with ZT V = Ir.

5. Ar = ZT AKV, br = ZT bK , cr = cKV

Z ⇒ Kr(s) includes the closed − loop information

V ⇒ Kr(s) is optimal in a restricted H2 sense



Π = ZVT
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International Space Station Module 1R:

• n = 270. G(s) is lightly damped ⇒ Long-lasting oscillations.
• K(s) is designed to remove these oscillations. nκ = 270.
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• Reduce the order to r = 19 using iterative Rational Krylov and

to r = 23 using one-sided frequency weighted balancing
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• FWBR: Frequency-weighted balancing with Wi(s) = I

and Wo(s) = [I + G(s)K(s)]
−1

G(s).

• IRK-CL: Iterative Rational Krylov - Closed Loop version:

σi reflect the weight Wo(s).
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T − T
FW20

 

T −T
FW23

 

T − T
IRK−CL

 

Relative Errors

H∞ error

T − TFW20 3.88 × 101

T − TFW23 5.63 × 10−1

T − TIRK−CL 1.47 × 10−1

Relative Errors

H2 error

T − TFW20 3.90 × 100

T − TFW23 1.88 × 10−1

T − TIRK−CL 3.57 × 10−2

Weighted Errors

H2 error

Wi(K − KFW20) 0.984 < 1

Wi(K − KFW23) 0.416 < 1

Wi(K − KIRK−CL) 0.365 < 1
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An Unstable Model:

• n=2000. K(s) of order nκ = 2000 stabilizes the model.
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• K(s) has four unstable poles.
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• Reduce the order to r = 14: Stabilizing controller

• Kr(s) has 4 unstable poles as desired.
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